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Spatial-temporal Gauss-Laguerre waves in dispersive media
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A family of dispersionless and diffractionless spatial-temporal Gauss-Laguerre waves propagating in disper-
sive linear and transparent media is introduced. Contrary to pulsed Bessel beams and envelope-X waves
recently studied in media with normal dispersion, these spatiotemporal Gauss-Laguerre beams may exist both
in the normal and anomalous dispersion spectral regions of the medium.
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I. INTRODUCTION

Spatial-temporal localization of acoustic or electroma
netic waves capable of propagating undistorted in vacu
such as X waves, focus wave modes, pulsed Bessel be
etc., have been the subject of an intense research in the
few years~see, e.g., Refs.@1–9#, and references therein!, and
special attention has been payed to their unusual proper
related to the superluminal@6# or subluminal@8# propagative
nature, to the construction of finite energy solutions~see,
e.g., Ref.@9#!, and to their practical implementation~see,
e.g., Ref.@10#!. Later investigations have predicted the ex
tence of localized envelope light waves propagating with
spreading both in space and time in linear dispersive
transparent media as a result of spatial-temporal coup
effects @11–17#. The potential interest of such localize
waves for applications in optical communications, metr
ogy, spectroscopy, and imaging was also pointed out.
cently, some of these localized waves have been show
play an important role in nonlinear optical processes as w
@18–20#. The existence of localized propagating light wav
in dispersive linear media which do not show spreading
fects both in space and time was first predicted in Ref.@11#,
where localized waves with axial symmetry were construc
as a superposition of monochromatic Bessel beams wi
frequency-dependent cone angle. By specializing the gen
form of polychromatic Bessel beams of Ref.@11#, recent
studies have further introduced special nondiffracting a
nondispersiveenvelope wave solutions, such as pulse
Bessel beams@13,15# and luminal envelope-X waves@16#.
For such waves the mechanism underlying cancellation
temporal spreading due to dispersion and spatial sprea
due to diffraction is possible solely in the normal dispers
spectral region of the material. For many applications, s
as in optical communications, the optical waves fall howe
in the anomalous dispersion region of the material, an
would be desirable to highlight a mechanism for wave loc
ization independent of the sign of second-order group ve
ity dispersion of the medium. Though it is commonly b
lieved that angular dispersion of polychromatic Bessel bea
can only compensate for normal material dispersion, it
been very recently shown that material group velocity d
persion cancellation can occur in the anomalous spectra
gion as well in a special class of polychromatic Bessel bea
@17#.
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In this paper we show the existence of a family of axia
symmetric propagation-invariant linear localized waves
dispersive materials that may exist both in the normal and
the anomalous dispersion spectral regions of the mate
The spatial-temporal wave envelope is expressed in term
Gauss-Laguerre functions and propagates almost at a lum
group velocity. The paper is organized as follows. In Sec
the basic grounds on optical wave propagation in dispers
media are reviewed, and both an integral and differen
representation of dispersionless and diffractionless wave
velopes is derived. In Sec. III the family of axially invarian
Gauss-Laguerre spatial-temporal beams is introduced,
some numerical results are presented. Finally, in Sec. IV
main conclusions are outlined.

II. DISPERSIONLESS AND DIFFRACTIONLESS OPTICAL
WAVE ENVELOPES IN DISPERSIVE

TRANSPARENT MEDIA

A. Integral representation

We start our analysis by considering optical wave pro
gation in a linear and transparent medium far from re
nances, with a real-valued refractive index that varies w
frequency,n5n(v). The most general solution to the scal
wave equation for the electric fieldE(x,y,z,t) is given by
the superposition of monochromatic plane waves at
quencyv and wave vectork5(kx ,ky ,kz) satisfying the dis-
persion relationuku5k(v)5vn(v)/c0, where c0 is the
speed of light in vacuum, i.e., one has

E~x,y,z,t !5E dvdkxdkydkzÊ~kx ,ky ,kz ,v!d„kx
21ky

21kz
2

2k2~v!…exp@ ivt2 i ~kxx1kyy1kzz!#1c.c.

~1!

In Eq. ~1!, Ê(kx ,ky ,kz ,v) is the spectral amplitude of plan
waves, and the integral is extended over the positi
frequency part of the spectrum and to real-valued wave v
tors k. Equation~1! describes a propagating nondispersi
and nondiffractingenvelopewave, provided that the longitu
dinal wave numberkz is chosen to be alinear function of
frequencyv. Introducing a reference frequencyv0 ~carrier
©2003 The American Physical Society12-1
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frequency! and settingkz(v)5kz01kz08 (v2v0), wherekz0

and kz08 are undetermined parameters at this stage, one
formally write

E~x,y,z,t !5exp@ i ~v0t2kz0z!#c~x,y,t!1c.c., ~2!

where t5t2kz08 z is a retarded time andc(x,y,t) is the
wave envelope, given by

c~x,y,t!5E dVdkxdkyĉ~kx ,ky ,V!d„kx
21ky

2

2k'
2 ~V!…exp@ iVt2 i ~kxx1kyy!#, ~3!

where we have set

k'
2 ~V![k2~v01V!2~kz01kz08 V!2. ~4!

The electric field is then expressed by the product of a car
sinusoidal wave at frequencyv0, propagating with a phas
velocity v f5v0 /kz0, and an envelopec that propagates
without distortions, both in space and time, with a gro
velocity vg51/kz08 . A particularly important case, which ha
been considered in previous works@11,13,14,16#, is that of
wave envelopes with axial symmetry, i.e.,c5c(r ,t), where
r 5(x21y2)1/2. In this case the envelope spectral amplitu
ĉ depends onkx and ky through kx

21ky
2 , and thed-Dirac

term in Eq.~3! can be removed after performing the integr
tion with respect tokx andky in cylindrical coordinates. Re
calling the integral representation ofJ0 Bessel function, one
obtains

c~r ,t!5E dVŜ~V!J0„k'~V!r …exp~ iVt!, ~5!

whereŜ(V) is an arbitrary spectral amplitude. To avoid th
occurrence of evanescent waves, the integral in Eq.~5! has to
be limited to the frequencies for whichk'(V) is real valued.
In particular, for near-monochromatic waves, the express
of k'(V) can be simplified after a power expansion
k(v01V) aroundv0. By pushing the power expansion u
to second order inV to account for group-velocity dispersio
effects, one has

k'
2 ~V!5A1BV2CV2, ~6!

where we have set

A[k0
22kz0

2 , ~7!

B[2~k0k082kz0kz08 !, ~8!

C[kz08
22k08

22k0k09 , ~9!

and k0[k(v0), k08[(]k/]v)v0
, k09[(]2k/]v2)v0

. Note
that, in the case of propagation in vacuum, Eq.~6! is rigorous
with k0950 in Eq. ~9!.
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B. Differential equation for the wave envelope

Instead of using the integral representation~3! of the
wave envelopec, it is worth writing down also a differentia
equation forc. To this aim, let us observe that, due to th
d-Dirac term entering in Eq.~3!, only the terms satisfying
the conditionkx

21ky
25k'

2 (V) contribute to the integral, so
that one has

E dVdkxdky@kx
21ky

22k'
2 ~V!#ĉ~kx ,ky ,V!d„kx

21ky
2

2k'
2 ~V!…exp@ iVt2 i ~kxx1kyy!#50. ~10!

Since

E dVdkxdky~kx
21ky

2!ĉ~kx ,ky ,V!d„kx
21ky

22k'
2 ~V!…

3exp@ iVt2 i ~kxx1kyy!#

52¹'
2 c, ~11!

where¹'
2 []2/]x21]2/]y2 is the transverse Laplacian, an

E dVdkxdkyk'
2 ~V!ĉ~kx ,ky ,V!d„kx

21ky
22k'

2 ~V!…

3exp@ iVt2 i ~kxx1kyy!#

5k'
2 S 2 i

]

]t Dc, ~12!

where the operatork'
2 (2 i ]/]t) is defined through the

power series expansion ofk'
2 (V) after the substitutionV

→2 i ]/]t, from Eqs.~10!–~12! one obtains

¹'
2 c1k'

2 S 2 i
]

]t Dc50. ~13!

Equation~13! is the basic partial differential equation th
has to be satisfied by the envelopec of a dispersionless and
diffractionless wave~see also Ref.@16#!. In particular, for
narrow-band pulses, for which the power expansion~6! for
k'

2 (V) holds, Eq.~13! takes the simplified form

¹'
2 c1Ac2 iB

]c

]t
1C

]2c

]t2
50, ~14!

where the coefficientsA, B, andC are given by Eqs.~7!–~9!.
Note that Eq.~5! represents the most general solution to E
~13! with cylindrical symmetry, however Eq.~13! @or Eq.
~14! in the quasimonochromatic case# is more general and i
includes solutions without axial symmetry. The existence a
properties of localized solutions to Eq.~14! depend strongly
on the values of coefficientsA, B, andC given by Eqs.~7!–
~9!, which are determined once the free parameterskz0 and
kz08 , which fix the phase and group velocities of the wav
are assigned. As particular cases, Eq.~14! contains the two-
dimensional ~2D! and 3D elliptic Helmholtz equation
~namely, forB5C50, A.0 and B50, A.0, C.0, re-
2-2
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spectively!, the Schro¨dinger equation~for A5C50, B
Þ0), the hyperbolic 2D wave equation~for A5B50, C
,0), and the 2D Klein-Gordon equation~for B50, C,0,
andA,0).

III. LOCALIZED GAUSS-LAGUERRE WAVES

A. Gauss-Laguerre waves and their Bessel-beam
spectral representation

Pulsed Bessel beams@13# and envelope-X waves@16# rep-
resent special solutions of the envelope wave equation~14!
with axial symmetry in the quasimonochromatic approxim
tion. In fact, one can easily show that these two families
solutions are obtained by imposingB5C50, A.0 for
pulsed Bessel beams andA5B50, C,0 for envelopeX
waves. For the sake of completeness, these types of solu
are briefly reviewed in the Appendix. What is important
stress here is that these solutions can exist solely fork09
.0, i.e., in the normal dispersion spectral region of the m
dium. In this section we introduce a family of localized e
velope waves with axial symmetry, which can be suppor
both in the normal and anomalous dispersion regions of
material. As we will show, these localized waves are
pressed in terms of Gauss-Laguerre pulsed beams,
propagate undistorted with a group velocityvg which is al-
most luminal, i.e., close to the usual value 1/k08 . Gauss-
Laguerre localized waves are the family of solutions w
axial symmetry of the quasimonochromatic envelope eq
tion ~14! when the parameterskz0 and kz08 are chosen such
that A5C50. This occurs by assuming

kz05k0 , kz08 5k08A11
k0k09

k08
2

~15!

and, in correspondence, the envelope differential equa
reads

iB
]c

]t
5¹'

2 c. ~16!

Note that Eq.~16! is formally equivalent to the paraxial wav
equation of diffraction in homogeneous media~see, for in-
stance, Ref.@21#!, however the propagation distance is he
played by the retarded timet5t2z/vg . The expression of
the B coefficient in the previous equation is

B52k0k08S 12A11
k0k09

k08
2 D . ~17!

The phase velocity of the Gauss-Laguerre waves is given
v f5v0 /k0, whereas the group~envelope! velocity is given
by vg51/k0z8 .1/k08 ~since usuallyuk0k09/k08

2u!1). The sign
of the group-velocity dispersion parameter determines
sign of theB coefficient in Eq.~16!, namely, one hasB.0
@B,0# for k09,0 @k09.0#. A family of solutions with axial
symmetry of Eq.~16! is given by the set of Gauss-Laguer
waves@21#, which are explicitly given by
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c~r ,t!5
1

~t07 i t!n11
Ln

0F uBur 2

4~t07 i t!GexpF2
uBur 2

4~t07 i t!G ,
~18!

wheren50,1,2, . . . , Ln
0 is the generalized Laguerre polyno

mial of ordern, t0 is an arbitrary parameter that determin
the on-axis pulse duration and transverse beam size, an
upper ~lower! sign applies ifB.0 (B,0). Note that the
on-axis (r 50) wave intensity varies with retarded timet
according to

uc~0,t!u2}
1

~t0
21t2!n11

, ~19!

i.e., it describes a localized pulse with an algebraic dec
andt0 determines the pulse duration. Spatial localization
determined mostly by the Gaussian term; in particular, at
50, the beam spot sizew0 of the Gaussian beam turns out
be

w05A4t0

uBu
.A4t0k08

k0
2uk09u

. ~20!

It is worth considering the spectrumŜ(V) of the Gauss-
Laguerre localized waves, which can be derived by mean
the Bessel-beam decomposition according to Eq.~5!. Indeed,
one can show that the Gauss-Laguerre waves, given by
~18!, can be obtained from Eq.~5! by setting@22#

Ŝ~V!5H 1

n!
Vnexp~2t0V!, V.0

0, V,0

~21!

for k09,0, and

Ŝ~V!5H 1

n!
~2V!nexp~t0V!, V,0

0, V.0

~22!

for k09.0 ~see Fig. 1!. Gauss-Laguerre waves thus show
one-side spectrum which is blue shifted~with respect to the
reference carrier frequency! in the anomalous dispersion re
gime (k09,0) and redshifted in the normal dispersion r

FIG. 1. Qualitative behavior of the spectrumŜ(v) of a spatial-
temporal Gauss-Laguerre wave~for n52) in the anomalous and
normal dispersion regimes.
2-3
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STEFANO LONGHI PHYSICAL REVIEW E68, 066612 ~2003!
gime (k09.0). It should be noted that the analytic form
Gauss-Laguerre waves given by Eq.~18! is exact if one ap-
proximates the dispersion curvek'(V) with its power ex-
pansion up to second order inV, i.e., by neglecting third-
order and higher-order dispersion effects. For ultrash
pulses, i.e., when the spectral extent ofŜ(V) is broad, one
should consider the integral representation of Gau
Laguerre waves, given by Eq.~5!, after assuming fork'(V)
the exact expression given by Eq.~4! and determined by the
exact dispersion relationk(v) of the material. The existenc
of Gauss-Laguerre waves requires a nonvanishing gro
velocity dispersion parameter, i.e.,k09Þ0, so that the under
lying wave localization mechanism is truly a spatia
temporal effect involving both diffraction and group-veloci
dispersion effects. No Gauss-Laguerre waves may exis
vacuum. As a final remark, it should be noted that the c
dition for group-velocity cancellation achievable with pol
chromatic Bessel beams in the anomalous dispersion reg
recently considered in Ref.@17# leads to a rather differen
class of localized waves than the Gauss-Laguerre family c
sidered in this work. In fact, if we consider the integral re
resentation of localized diffractionless and dispersionl
waves in terms of Bessel beams@Eq. ~5!# and introduce the
cone angleu(V) of Bessel beams according to@17#

sin@u~V!#5
k'~V!

k~v01V!
, cos@u~V!#5

kz~V!

k~v01V!
,

~23!

the condition for group-velocity cancellation considered
Ref. @17# corresponds tou(V)5u01u09V

2/2, where u09
5k09/(k0tanu0) andu0 is a free-family parameter that dete
mines the phase and group velocities of the localized wa
which are given explicitly byv f5v0 /(k0cosu0) and vg

51/(k08cosu0). In correspondence, using Eqs.~6! and~7! and
expanding all terms up to second order inV, one obtains
A5k0

2sin2u0, B52k0k08sin2u0, and C52k08
2sin2u02k0k09 .

Since AÞ0 and CÞ0, such polychromatic waves do no
correspond to Gauss-Laguerre waves.

B. Numerical examples

In order to provide some numerical examples of Gau
Laguerre localized waves in dispersive transparent media
us consider beam propagation in sapphire, which show
transparent range from.300 nm up to .2800 nm and
anomalous dispersion for wavelengths larger than.1.3 mm;
similar results can be of course obtained in other transpa
dielectric materials, such as fused silica or glasses. In
2~a! a typical space-time diagram of the envelope intens
uc(r ,t)u2 is shown for a Gauss-Laguerre wave of the seco
order (n52) at the carrier wavelength~in vacuum! l0
52pc0 /v051.55mm of optical communications, wher
the material dispersion is anomalous@k09.23.2477310226

s2/rad2 m, 1/k08.1.69183108 m/s, n(v0)51.7462]. The
diagram has been obtained by using the integral represe
tion of Gauss-Laguerre waves in terms of Bessel beams@Eq.
~5!# with the exact dispersion curve fork'(V) and assuming
06661
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a spectral amplitudeŜ(V) according to Eq.~21!. The disper-
sion curvek(v) for sapphire has been calculated by using
Sellmeier equation for the refractive index according to
data of Ref.@23#. Figure 2~b! shows the behavior of the
normalized transverse wave vectork' /k0 as a function of
frequency using the Sellmeier equation and compared w
the approximate curve given by Eq.~6!. The space-time dia-
gram in Fig. 2~a! turns out to be very well fitted by the
analytic expression of the Gauss-Laguerre waves given
Eq. ~18! @see Fig. 2~c!#. Figure 3 shows the same plots as
Fig. 2 but for a carrier wavelengthl05780 nm, which falls
in the normal dispersion region@k09.6.0098310226

s2/rad2 m, 1/k08.1.68293108 m/s, n(v0)51.7607]. Figure
4 shows finally the case of a carrier wavelengthl0

FIG. 2. ~a! Space-time plot of envelope intensityuc(r ,t)u2 ~in
arbitrary units! for a second-order Gauss-Laguerre wave (n52) in
sapphire in the anomalous dispersion region (l051550 nm). Pulse
duration parameter ist0520 fs. ~b! Behavior of normalized trans
verse wave vectork' /k0 vs frequencyv ~solid curve!; the dashed
curve is the corresponding approximate behavior as given by

~6!. The shape of the spectral amplitudeŜ(v) is also shown~thin
solid line!. ~c! Radial behavior of wave intensityuc(r ,0)u2 at re-
tarded timet50 ~solid curve! and corresponding approximat
curve as given by Eq.~18! ~dashed curve, almost overlapped wi
the solid one!.

FIG. 3. Same as Fig. 2, but in the normal dispersion reg
(l05780 nm). Pulse duration parameter ist0520 fs.
2-4
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SPATIAL-TEMPORAL GAUSS-LAGUERRE WAVES IN . . . PHYSICAL REVIEW E68, 066612 ~2003!
51290 nm close to the zero dispersion point@k09.2.9485
310227 s2/rad2 m, 1/k08.1.69273108 m/s, n(v0)
51.7507]. Note that, in this case, the behavior of the tra
verse wave numberk' versus frequency differs substantial
from the approximate expression obtained by neglec
higher-order dispersion effects. In addition, there exists n
a cutoff frequency below whichk' becomes purely imagi
nary. Since Eq.~5! yields a spatially localized wave, pro
vided thatk' remains real, the spectrumŜ(v) has been trun-
cated and set equal to zero below the cutoff frequency@see
Fig. 4~b!#. Note that, due to the large deviation of the disp
sion curves in Fig. 4~b!, the Gauss-Laguerre wave turns o
to remarkably deviate from the analytical expression giv
by Eq. ~18! @see Fig. 4~c!#.

IV. CONCLUSION AND DISCUSSION

In this paper we have introduced a class of localized n
diffracting and nondispersive localized waves in linear d
persive transparent media that can be supported both in
normal and anomalous dispersion spectral regions of the
terial. By neglecting third-order and higher-order dispers
effects, such localized waves satisfy the typical parax
wave equation of diffraction and are expressed in terms
Gauss-Laguerre functions. The spectral representation o
spatial-temporal Gauss-Laguerre waves in terms of mo

FIG. 4. Same as Fig. 2, but for a carrier wavelength close to
zero group-velocity dispersion point (l051290 nm). Pulse dura
tion parameter ist0520 fs.
v.

c.

ct

.
y

06661
-

g
w

-
t
n

-
-
he
a-
n
l
f

he
o-

chromatic Bessel beams has been also presented, and
distinctive features as compared to previously studied pu
Bessel beams and envelope-X waves have been discu
As a final comment, it is worth observing that, though mo
of previous studies on spatiotemporal wave localization h
been concerned with solutions showing an axial~radial!
symmetry and thus representable as a superposition of m
chromatic Bessel beams, the differential approach to
problem of spatial-temporal wave localization in dispers
media, developed in Sec. II, allows one to easily predict
existence of families of waves with broken axial symmet
For instance, though we have limited our analysis to
radially symmetric solutions to Eq.~16!, it is well known
that there exist families of solutions with broken axial inva
ance, such as elliptic Gaussian waves or Gauss-Her
waves.

APPENDIX: PULSED BESSEL BEAMS
AND ENVELOPE-X WAVES

In the case of a material withnormal dispersion(k09
.0), two types of solutions to Eq.~5! in the near-
monochromatic case@or, equivalently, to Eq.~14!# have been
recently found in Refs.@13,16#, namely, dispersion-free
pulsed Bessel beams@13# and luminal envelope-X waves
@16#. Thepulsed Bessel beams@13# are obtained by assumin
B5C50, i.e., kz05k0k08/(k08

21k0k09)
1/2 and kz08 5(k08

2

1k0k09)
1/2, so that k' is independent of frequency an

given by k'5@k0
3k09/(k08

21k0k09)#1/2. In this case from Eq.
~5! one obtains c(r ,t)5J0(k'r )s(t), where s(t)
5*dVŜ(V)exp(iVt) is an arbitrary temporal pulse profile
We thus have a pulsed Bessel beam that propagates wit
temporal spreading at a group velocityvg51/kz08 .1/k08
~since in typical casesuk0k09u!k08

2; for more details, see Ref
@13#!.

The envelope-X waves@16#, propagating at a group ve
locity vg51/k08 , are instead obtained by assumingA5B
50, i.e.,kz05k0 andkz08 5k08 . In this case one hasc(r ,t)

5*dVŜ(V)J0(Ak0k09uVu)exp(iVt), which yields a typical
X-shaped wave in the (r ,t) plane by choosing, e.g., a spe
tral amplitudeŜ(V)5exp(2t0uVu) ~see Ref.@16# for more
details!. Note that both previous types of localized nond
persive and nondiffracting solutions exist solely in the n
mal dispersion spectral region.
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